Skip to main content

Polymorphism, Encapsulation, and Inheritance Work Together


Polymorphism, Encapsulation, and Inheritance Work Together:

When properly applied, polymorphism, encapsulation, and inheritance combine to produce a programming environment that supports the development of far more robust and scaleable programs than does the process-oriented model. A well-designed hierarchy of classes is the basis for reusing the code in which you have invested time and effort developing and testing. Encapsulation allows you to migrate your implementations over time without breaking the code that depends on the public interface of your classes. Polymorphism allows you to create clean, sensible, readable, and resilient code. Of the two real-world examples, the automobile more completely illustrates the power of object-oriented design. Dogs are fun to think about from an inheritance standpoint, but cars are more like programs. All drivers rely on inheritance to drive different types (subclasses) of vehicles. Whether the vehicle is a school bus, a Mercedes sedan, a Porsche, or the family minivan, drivers can all more or less find and operate the steering wheel, the brakes, and the accelerator. After a bit of gear grinding, most people can even manage the difference between a stick shift and an automatic, because they fundamentally understand their common superclass, the transmission.
People interface with encapsulated features on cars all the time. The brake and gas pedals hide an incredible array of complexity with an interface so simple you can operate them with your feet! The implementation of the engine, the style of brakes, and the size of the tires have no effect on how you interface with the class definition  of the pedals. The final attribute, polymorphism, is clearly reflected in the ability of car manufacturers to offer a wide array of options on basically the same vehicle. For example, you can get an antilock braking system or traditional brakes, power or rack-and-pinion steering, 4-, 6-, or 8-cylinder engines. Either way, you will still press the break pedal to stop, turn
the steering wheel to change direction, and press the accelerator when you want to move. The same interface can be used to control a number of different implementations. As you can see, it is through the application of encapsulation, inheritance, and polymorphism that the individual parts are transformed into the object known as a car. The same is also true of computer programs. By the application of object-oriented principles, the various parts of a complex program can be brought together to form
a cohesive, robust, maintainable whole.  As mentioned at the start of this section, every Java program is object-oriented. Or, put more precisely, every Java program involves encapsulation, inheritance, and
polymorphism. Although the short example programs shown in the rest of this chapter and in the next few chapters may not seem to exhibit all of these features, they are nevertheless present. As you will see, many of the features supplied by Java are part of its built-in class libraries, which do make extensive use of encapsulation, inheritance, and polymorphism.

Comments

  1. after doing my comment in this blog i noticed this your blog that is copied java complete reference book you may get a problem for doing this from google

    ReplyDelete

Post a Comment

Give your valuable Comment...

Popular posts from this blog

Object-Oriented Programming and JAVA Programming Language

  Object-Oriented Programming and:   Object-oriented programming (OOP) is a programming paradigm using "objects" – data structures consisting of data fields and methods together with their interactions – to design applications and computer programs. Programming techniques may include features such as data abstraction, encapsulation, messaging, modularity, olymorphism, and inheritance. Many modern programming languages now support OOP, at least as an option. JAVA Programming Language: Object-oriented programming is at the core of Java. In fact, all Java programs are object-oriented, this isn’t an option the way that it is in C++, for example. OOP is so integral to Java that you must understand its basic principles before you can write even simple Java programs. Therefore, this chapter begins with a discussion of the theoretical aspects of OOP.

Read or input form user in Java using BufferedReader

 BufferedReader use to read text from a character-input stream, buffering characters so as to provide for the efficient reading of characters, arrays, and lines.The buffer size may be specified, or the default size may be used. The default is large enough for most purposes. In Java  BufferedReader is a efficient method to read an input. Here given a short example to read a string from user and print it: package palindrome; import java.io.BufferedReader; import java.io.InputStreamReader; public class  inputExample   {     public static void main(String[] args) throws Exception {    BufferedReader br = new BufferedReader(new InputStreamReader(System.in));     String s = new String();       s =br.readLine();     System.out.println(s);     } }

Absolute value and Floating-point absolute value function in C Programming Language

Absolute value function in C Programming Language is abs(i), Its return the absolute valu of i. where  i  is any positive or negative  number. It is integer type function. The include file of abs(i) is stslib.h Observe under program: #include<stdio.h> #include<stdlib.h> int main(void) { int a; scanf("%d",&a); printf("%d",abs(a)); } Here I use a integer number. Input it by scanf and print the Absolute value by abs() function. Floating-point Absolute value function in C Programming Language is fabs(i), Its return the absolute valu of i. where  i  is any positive or negative  Floating-point number. It is double integer type function. The include file of fabs(i) is math.h Observe under program: #include<stdio.h> #include<stdlib.h>  int main(void) { float a; scanf("%f",&a); printf("%.2f",fabs(a)); } Here I use a integer number. Input it by scanf and print the Floating-point Absolute value b